Abstract

In this study, the mathematical form of the second order perturbed singular delay differential system is presented. The comprehensive features using the singular-point, perturbed factor and pantograph term are provided together with the shape factor of the second order perturbed singular delay differential system. The novel model is simulated numerically through the artificial neural networks (ANNs) based on the global/local optimization procedures, i.e., genetic algorithm (GA) and sequential quadratic programming (SQP). An activation function is constructed by using the differential model based on the second order perturbed singular delay differential system. The optimization of fitness function is performed through the hybrid computing strength of the ANNs-GA-SQP to solve the second order perturbed singular delay differential system. The exactness, substantiation, and authentication of the novel system is observed to solve three different variants of the novel model. The convergence, robustness, correctness, and stability of the numerical approach is performed using the comparison procedures of the available exact solutions. For the reliability, the statistical performances with necessary processes are provided using the ANNs-GA-SQP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.