Abstract

In this paper, a hybrid genetic programming (GP) with multiple genes is implemented for developing prediction models of spectral energy demands. A multi-objective strategy is used for maximizing the accuracy and minimizing the complexity of the models. Both structural properties and earthquake characteristics are considered in prediction models of four demand parameters. Here, the earthquake records are classified based on soil type assuming that different soil classes have linear relationships in terms of GP genes. Therefore, linear regression analysis is used to connect genes for different soil types, which results in a total of sixteen prediction models. The accuracy and effectiveness of these models were assessed using different performance metrics and their performance was compared with several other models. The results indicate that not only the proposed models are simple, but also they outperform other spectral energy demand models proposed in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.