Abstract
<p>The multi-term time-fractional order diffusion-wave equation (MT-TFDWE) is an important mathematical model for processes exhibiting anomalous diffusion and wave propagation with memory effects. This article develops a robust numerical technique based on the Chebyshev collocation method (CCM) coupled with the Laplace transform (LT) to solve the time-fractional diffusion-wave equation. The CCM is utilized to discretize the spatial domain, which ensures remarkable accuracy and excellent efficiency in capturing the variations of spatial solutions. The LT is used to handle the time-fractional derivative, which converts the problem into an algebraic equation in a simple form. However, while using the LT, the main difficulty arises in calculating its inverse. In many situations, the analytical inversion of LT becomes a cumbersome job. Therefore, the numerical techniques are then used to obtain the time domain solution from the frequency domain solution. Various numerical inverse Laplace transform methods (NILTMs) have been developed by the researchers. In this work, we use the contour integration method (CIM), which is capable of handling complex inversion tasks efficiently. This hybrid technique provides a powerful tool for the numerical solution of the time-fractional diffusion-wave equation. The accuracy and efficiency of the proposed technique are validated through four test problems.</p>
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.