Abstract
For accelerating the technology development and facilitating the reliable operation of lithium-ion batteries, accurate prediction for battery remaining useful life (RUL) are both critical. In this paper, a 1D CNN-BiLSTM method is proposed to extract the RUL prediction of lithium-ion battery of Electric Vehicles (EVs). By using one dimensional convolutional neural network (1D CNN) and bidirectional long short-term memory (BiLSTM) neural network simultaneously, selecting the ELU activation function to apply to the convolutional layer, a hybrid neural network is proposed to improve the accuracy and stability of lithium-ion battery RUL prediction. The 1D CNN is used to fully mine the deep features of lithium-ion SOH data, while the BiLSTM is adopted to study the deep features in two directions, and the RUL prediction of lithium-ion battery is output through dense layer. To verify the effectiveness of the proposed method, the battery data of the National Aeronautics and Space Administration (NASA) are utilized to make some comparisons among the RNN model, LSTM model, BiLSTM model and hybrid neural network model. The results show that the hybrid one has higher generalization ability and prediction accuracy than the others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.