Abstract

Due to the inappropriate or untimely distribution of post-disaster goods, many regions did not receive timely and efficient relief for infected people in the coronavirus disease outbreak that began in 2019. This study develops a model for the emergency relief routing problem (ERRP) to distribute post-disaster relief more reasonably. Unlike general route optimizations, patients’ suffering is taken into account in the model, allowing patients in more urgent situations to receive relief operations first. A new metaheuristic algorithm, the hybrid brain storm optimization (HBSO) algorithm, is proposed to deal with the model. The hybrid algorithm adds the ideas of the simulated annealing (SA) algorithm and large neighborhood search (LNS) algorithm into the BSO algorithm, improving its ability to escape from the local optimum trap and speeding up the convergence. In simulation experiments, the BSO algorithm, BSO+LNS algorithm (combining the BSO with the LNS), and HBSO algorithm (combining the BSO with the LNS and SA) are compared. The results of simulation experiments show the following: (1) The HBSO algorithm outperforms its rivals, obtaining a smaller total cost and providing a more stable ability to discover the best solution for the ERRP; (2) the ERRP model can greatly reduce the level of patient suffering and can prioritize patients in more urgent situations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call