Abstract

An algorithm to detect collisions between both rigid and deformable objects is presented. The approach exploits benefits of a bounding volume hierarchy (BVH) and a feature-based method. The BVH decomposes the three dimensional polygonal objects into a hierarchy of spheres. The lowest level of the hierarchy is formed utilising spheres which bound 1-rings surrounding each vertex of the original mesh. Spatial coherence is exploited during construction to ensure that adjacent 1-rings are joined first. This promotes tighter bounding volumes as the objects deform. Experiments were carried out to analyse the performance of the method when varying the BVH construction to consider octrees and binary trees. To illustrate the enhancement the approach provides it has been compared against standard Sphere and Axis-aligned Bounding Volume Hierarchies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.