Abstract
Clustering is a process of randomly selecting k-cluster centers also grouping the data around those centers. Issues of data clustering have recently received research attention and as such, a nature-based optimization algorithm called Black Hole (BH) has said to be suggested as an arrangement to data clustering issues. The BH as a metaheuristic which is elicited from public duplicates the black hole event in the universe, whereas circling arrangement in the hunt space addresses a solo star. Even though primordial BH has shown enhanced execution taking place standard datasets, it doesn't have investigation capacities yet plays out a fine local search. In this paper, another crossover metaheuristic reliant on the mix of BH algorithm as well as genetic algorithm suggested. Genetic algorithm represents its first part of the algorithm which prospects the search space and provides the initial positions for the stars. Then, the BH algorithm utilizes the search space and finds the best solution until the termination condition is reached. The proposed hybrid approach was estimated on synchronized nine popular standard functions where the outcomes indicated that the process generated enhanced outcome with regard to robustness compared to BH and the benchmarking algorithms in the study. Furthermore, it also revealed a high convergence rate which used six real datasets sourced of the UCI machine learning laboratory, indicating fine conduct of the hybrid algorithm on data clustering problems. Conclusively, the investigation showed the suitability of the suggested hybrid algorithm designed for resolving data clustering issues.
Highlights
The ground of data science, data clustering refers to the grouping of similar data together; similar items are positioned in solitary group while diverse items are placed in various groups
Proposed algorithm was evaluated for data clustering on 6 datasets
These data sets were extracted from the UCI machine learning laboratory
Summary
A Hybrid Black Hole Algorithm with Genetic Algorithm for Solving Data Clustering Problems. Information Science Department, Faculty Computer and Information, Assiut University, Assiut, Egypt cComputer Science Department, Faculty Computer and Information, Assiut University, Assiut, Egypt. Article History: Received: 11 January 2021; Accepted: 27 February 2021; Published online: 5 April 2021
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Turkish Journal of Computer and Mathematics Education (TURCOMAT)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.