Abstract
Clustering is one of the attractive and major tasks in data mining that is used in many applications. It refers to group together data points, which are similar to one another based on some criteria. One of the efficient algorithms which applied on data clustering is particle swarm optimization (PSO) algorithm. However, PSO often leads to premature convergence and its performance is highly depended on parameter tuning and many efforts have been done to improve its performance in different ways. In order to improve the efficiency of the PSO on data clustering, it is hybridized with the big bang-big crunch algorithm (BB-BC) in this paper. In the proposed algorithm, namely PSO-BB-BC, PSO is used to explore the search space for finding the optimal centroids of the clusters. Whenever PSO loses its exploration, to prevent premature convergence, BB-BC algorithm is used to diversify the particles. The performance of the hybrid algorithm is compared with PSO, BB-BC and K-means algorithms using six benchmark datasets taken from the UCI machine learning repository. Experimental results show that the hybrid algorithm is superior to other test algorithms in all test datasets in terms of the quality of the clusters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.