Abstract
In this paper, a hybrid biogeography-based optimization (HBBO) algorithm has been proposed for the job-shop scheduling problem (JSP). Biogeography-based optimization (BBO) is a new bio-inpired computation method that is based on the science of biogeography. The BBO algorithm searches for the global optimum mainly through two main steps: migration and mutation. As JSP is one of the most difficult combinational optimization problems, the original BBO algorithm cannot handle it very well, especially for instances with larger size. The proposed HBBO algorithm combines the chaos theory and “searching around the optimum” strategy with the basic BBO, which makes it converge to global optimum solution faster and more stably. Series of comparative experiments with particle swarm optimization (PSO), basic BBO, the CPLEX and 14 other competitive algorithms are conducted, and the results show that our proposed HBBO algorithm outperforms the other state-of-the-art algorithms, such as genetic algorithm (GA), simulated annealing (SA), the PSO and the basic BBO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.