Abstract

Feature selection is a typical multiobjective problem including two conflicting objectives. In classification, feature selection aims to improve or maintain classification accuracy while reducing the number of selected features. In practical applications, feature selection is one of the most important tasks in remote sensing image classification. In recent years, many metaheuristic algorithms have attempted to explore feature selection, such as the dragonfly algorithm (DA). Dragonfly algorithms have a powerful search capability that achieves good results, but there are still some shortcomings, specifically that the algorithm’s ability to explore will be weakened in the late phase, the diversity of the populations is not sufficient, and the convergence speed is slow. To overcome these shortcomings, we propose an improved dragonfly algorithm combined with a directed differential operator, called BDA-DDO. First, to enhance the exploration capability of DA in the later stages, we present an adaptive step-updating mechanism where the dragonfly step size decreases with iteration. Second, to speed up the convergence of the DA algorithm, we designed a new differential operator. We constructed a directed differential operator that can provide a promising direction for the search, then sped up the convergence. Third, we also designed an adaptive paradigm to update the directed differential operator to improve the diversity of the populations. The proposed method was tested on 14 mainstream public UCI datasets. The experimental results were compared with seven representative feature selection methods, including the DA variant algorithms, and the results show that the proposed algorithm outperformed the other representative and state-of-the-art DA variant algorithms in terms of both convergence speed and solution quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call