Abstract

This work proposes a hybrid genetic algorithm (GA) to address the unit commitment (UC) problem. In the UC problem, the goal is to schedule a subset of a given group of electrical power generating units and also to determine their production output in order to meet energy demands at minimum cost. In addition, the solution must satisfy a set of technological and operational constraints. The algorithm developed is a hybrid biased random key genetic algorithm (HBRKGA). It uses random keys to encode the solutions and introduces bias both in the parent selection procedure and in the crossover strategy. To intensify the search close to good solutions, the GA is hybridized with local search. Tests have been performed on benchmark large-scale power systems. The computational results demonstrate that the HBRKGA is effective and efficient. In addition, it is also shown that it improves the solutions obtained by current state-of-the-art methodologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.