Abstract

This research aims to propose a framework for evaluating credit applications by assigning a binary score to the applicant. The score is targeted to determine whether the credit application is ‘good’ or ‘bad’ in small business purpose loans. Even tiny performance improvements in small businesses may yield a positive impact on the economy as they generate more than 60% of the value. The method presented in this paper hybridizes the Genetic Algorithm (GA) and the Support Vector Machine (SVM) in a bi-level feeding mechanism for increased prediction accuracy. The first level is to determine the parameters of SVM and the second is to find a feature set that increases classification accuracy. To test the proposed approach, we have investigated three different data sets; UCI Australian data set for preliminary works, Lending Club data set for large training and testing, and UCI German and Australian datasets for benchmarking against some other notable methods that use GA. Our computational results show that our proposed method using a feedback mechanism under the hybrid bi-level GA-SVM structure outperforms other classification algorithms in the literature, namely Decision Tree, Random Forests, Logistic Regression, SVM and Artificial Neural Networks, effectively improves the classification accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.