Abstract

A Bayesian network (BN) is a knowledge representation formalism that has proven to be a promising tool for analyzing gene expression data. Several problems still restrict its successful applications. Typical gene expression databases contain measurements for thousands of genes and no more than several hundred samples, but most existing BNs learning algorithms do not scale more than a few hundred variables. Current methods result in poor quality BNs when applied in such high-dimensional datasets. We propose a hybrid constraint-based scored-searching method that is effective for learning gene networks from DNA microarray data. In the first phase of this method, a novel algorithm is used to generate a skeleton BN based on dependency analysis. Then the resulting BN structure is searched by a scoring metric combined with the knowledge learned from the first phase. Computational tests have shown that the proposed method achieves more accurate results than state-of-the-art methods. This method can also be scaled beyond datasets with several hundreds of variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.