Abstract
A high-fidelity battery model capable of accurately predicting battery performance is required for proper design and operation of battery-powered systems. However, the existing battery models have at least one of the following drawbacks: 1) requiring intensive computation due to high complexity; 2) not applicable for electrical circuit design and simulation; and 3) not capable of accurately capturing the state of charge (SOC) and predicting runtime of the battery due to neglecting the nonlinear capacity effects. This paper proposes a novel hybrid battery model, which takes the advantages of an electrical circuit battery model to accurately predicting the dynamic circuit characteristics of the battery and an analytical battery model to capturing the nonlinear capacity effects for the accurate SOC tracking and runtime prediction of the battery. The proposed battery model is validated by the simulation and experimental studies for the single-cell and multicell polymer lithium-ion batteries, as well as for a lead-acid battery. The proposed model is applicable to other types and sizes of electrochemical battery cells. The proposed battery model is computational effective for simulation, design, and real-time management of battery-powered systems.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.