Abstract
This paper proposes a hybrid bat algorithm with natural-inspired algorithms for continuous optimization problem. In this study, the proposed algorithm combines the reproduction step from weed algorithm and genetic algorithm. The reproduction step is applied to clone each bat population by fitness values and the genetic algorithm is applied in order to expand the population. The algorithm is evaluated on eighteen benchmark problems. The computational results of the proposed algorithm are compared with the methods in the literature which are self-adaptive differential evolution (DE), traditional DE algorithm, intersection mutation differential evolution (IMDE) algorithm, and the JDE self-adaptive algorithm. Findings show that the algorithm produces several solutions obtained by the previously published methods especially for the continuous unimodal function, the quartic function, the multimodal function and the discontinuous step function. In addition, the finding shows that the proposed algorithm can produce optimal solutions efficiently on benchmark instances within short computational time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.