Abstract
Abstract While using the binary quantile regression (BQR) model, we establish a hybrid bankruptcy prediction model with dynamic loadings for both the accounting-ratio-based and market-based information. Using the proposed model, we conduct an empirical study on a dataset comprising of default events during the period from 1996 to 2006. In this study, those firms experienced bankruptcy/liquidation events as defined by the Compustat database are classified as “defaulted” firms, whereas all other firms listed in the Fortune 500 with over a B-rating during the same time period are identified as “survived” firms. The empirical findings of this study are consistent with the following notions. The distance-to-default (DD) variable derived from the market-based model is statistically significant in explaining the observed default events, particularly of those firms with relatively poor credit quality (i.e., high credit risk). Conversely, the z -score obtained with the accounting-ratio-based approach is statistically significant in predicting bankruptcies of firms of relatively good credit quality (i.e., low credit risk). In-sample and out-of-sample bankruptcy prediction tests demonstrated the superior performance of utilizing dynamic loadings rather than constant loadings derived by the conventional logit model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.