Abstract

The paper proposes a new modeling approach for the prediction and analysis of the mechanical properties in deoxyribonucleic acid (DNA) molecules based on a hybrid atomistic-finite element continuum representation. The model takes into account of the complex geometry of the DNA strands, a structural mechanics representation of the atomic bonds existing in the molecules and the mass distribution of the atoms by using a lumped parameter model. A 13-base-pair DNA model is used to illustrate the proposed approach. The properties of the equivalent bond elements used to represent the DNA model have been derived. The natural frequencies, vibration mode shapes, and equivalent continuum mechanical properties of the DNA strand are obtained. The results from our model compare well with a high-fidelity molecular mechanics simulation and existing MD and experimental data from open literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.