Abstract

AbstractIt is shown that a recently developed hybrid modeling approach that combines machine learning (ML) with an atmospheric global circulation model (AGCM) can serve as a basis for capturing atmospheric processes not captured by the AGCM. This power of the approach is illustrated by three examples from a decades‐long climate simulation experiment. The first example demonstrates that the hybrid model can produce sudden stratospheric warming, a dynamical process of nature not resolved by the low resolution AGCM component of the hybrid model. The second and third example show that introducing 6‐hr cumulative precipitation and sea surface temperature (SST) as ML‐based prognostic variables improves the precipitation climatology and leads to a realistic ENSO signal in the SST and atmospheric surface pressure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.