Abstract

This paper presents a hybrid Particle Swarm Optimization-Artificial Neural Network (PSO-ANN) for predicting the kWh output from a grid-connected photovoltaic (GCPV) system. In this study, the ANN-based prediction utilized solar irradiance (SI), ambient temperature (AT) and module temperature (MT) as the inputs and kWh energy from the GCPV system as the sole output. Besides that, Particle Swarm Optimization (PSO) was used to optimize the number of neurons in the hidden layer during the ANN training process such that the Root Mean Square Error (RMSE) of the prediction was minimized. After the training process, testing was performed to validate the ANN training. The results showed that the proposed hybrid PSO-ANN had outperformed the hybrid Fast Evolutionary Programming-Artificial Neural Network (FEP-ANN) in producing lower RMSE. In addition, the optimal learning algorithm and population size in PSO were also investigated in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.