Abstract

Network intrusion detection is the problem of detecting unauthorised use of, or access to, computer systems over a network. Two broad approaches exist to tackle this problem: anomaly detection and misuse detection. An anomaly detection system is trained only on examples of normal connections, and thus has the potential to detect novel attacks. However, many anomaly detection systems simply report the anomalous activity, rather than analysing it further in order to report higher-level information that is of more use to a security officer. On the other hand, misuse detection systems recognise known attack patterns, thereby allowing them to provide more detailed information about an intrusion. However, such systems cannot detect novel attacks. A hybrid system is presented in this paper with the aim of combining the advantages of both approaches. Specifically, anomalous network connections are initially detected using an artificial immune system. Connections that are flagged as anomalous are then categorised using a Kohonen Self Organising Map, allowing higher-level information, in the form of cluster membership, to be extracted. Experimental results on the KDD 1999 Cup dataset show a low false positive rate and a detection and classification rate for Denial-of-Service and User-to-Root attacks that is higher than those in a sample of other works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.