Abstract

The paper presents a concept and application of a hybrid approach to modeling and optimization the Two-Echelon Capacitated Vehicle Routing Problem. Two environments of mathematical programming (MP) and constraint logic programming (CLP) were integrated. The strengths of MP and CLP, in which constraints are treated in a different way and different methods are implemented, were combined to use the strengths of both. The proposed approach is particularly important for the decision models with an objective function and many discrete decision variables added up in multiple constraints. The Two-Echelon Capacitated Vehicle Routing Problem (2E-CVRP) is an extension of the classical Capacitated Vehicle Routing Problem (CVRP) where the delivery depot-customers pass through intermediate depots (called satellites). Multi-echelon distribution systems are quite common in supply-chain and logistic systems. The presented approach will be compared with classical mathematical programming on the same data sets.KeywordsVehicle RoutingMulti-echelon systemsConstraint Logic ProgrammingMathematical ProgrammingOptimization

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.