Abstract

The objective of this study is to predict the residual stresses induced by ball-end milling using an hybrid approach based on a numerical simulation where thermo-mechanical loads equivalent to the cutting process are applied directly on to the final surface of the workpiece without modelling the material removal. The applied loading is derived from the measurement of the maximum cutting forces and the measurement by IR camera of the temperature in the tertiary shear zone. The 2D simplified model proposed herein is derived from the analysis of oblique cutting with elementary cutting tools and makes it possible to take account of the normal rake and local helix angles as well as the lead angle of the tool. The feasibility of the approach is assessed by comparing experimental measurements and numerical predictions of the residual stresses induced by ball-end tool finishing milling of flat specimens made of a bainitic steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call