Abstract
This letter presents the trajectory planning of small unmanned aerial vehicles (UAVs) for a communication relay mission in an urban environment. In particular, we focus on predicting the communication strength between air and ground nodes accurately to allow relay UAVs to maximize the communication performance improvement of networked nodes. In urban environments, this prediction is not easily achievable even with good mathematical models as each model is characterized by a series of parameters which are not trivial to obtain or estimate apriori and can vary during the mission. To address the difficulty, this work proposes to integrate a learning-based measurement technique with a probabilistic communication channel model. This hybrid approach is able to predict communication model parameters based on signal strength data that UAVs observe during the mission online, thus achieving better performance compared with the model-based approach in an urban environment. The predicted parameters are based on four discrete urban environment types. Numerical simulations validate the performance and benefit of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.