Abstract

This paper addresses a recently practical combinatorial problem named Three-Dimensional Loading Capacitated Vehicle Routing Problem, which combines three-dimensional loading problem and vehicle routing problem in distribution logistics. The problem requires a combinatorial optimization of a feasible loading and successive routing of vehicles to satisfy customer demands, where all vehicles must start and finish at a central depot. The goal of this combinatorial problem is to minimize the total transportation cost while serving customers. Despite its clearly practical significance in the real world distribution management, for its high combinatorial complexity, published papers on this problem in literature are very limited.We present a hybrid approach which combines Honey Bee Mating Optimization and six loading heuristics, one for vehicle routing and the other for three-dimensional loading, to solve the integrated problem. We computationally evaluate this hybrid approach on all publicly available test instances, and obtain new best solutions for several scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.