Abstract
Nowadays, electric vehicles (EV) are increasingly penetrating the transportation roads in most countries worldwide. Many efforts are oriented toward the deployment of the EVs infrastructures, including those dedicated to intelligent transportation and electro-mobility as well. For instance, many Moroccan organizations are collaborating to deploy charging stations in mostly all Moroccan cities. Furthermore, in Morocco, EVs are tax-free, and their users can charge for free their vehicles in any station. However, customers are still worried by the driving range of EVs. For instance, a new driving style is needed to increase the driving range of their EV, which is not easy in most cases. Therefore, the need for a companion system that helps in adopting a suitable driving style arise. The driving range depends mainly on the battery’s capacity. Hence, knowing in advance the battery’s state-of-charge (SoC) could help in computing the remaining driving range. In this paper, a battery SoC forecasting method is introduced and tested in a real case scenario on Rabat-Salé-Kénitra urban roads using a Twizy EV. Results show that this method is able to forecast the SoC up to 180 s ahead with minimal errors and low computational overhead, making it more suitable for deployment in in-vehicle embedded systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.