Abstract
Object detection is a critical task in computer vision, with applications ranging from autonomous vehicles to medical imaging. Traditional methods like template matching offer precise localization but struggle with variations in object appearance, while deep learning approaches such as Faster R-CNN excel in handling diverse and complex datasets but often require extensive computational resources and large amounts of labeled data. This paper proposes a hybrid approach that integrates template matching with Faster R-CNN to leverage the strengths of both techniques. By combining the accuracy of template matching with the robustness and generalization capabilities of Faster R-CNN, our method achieves superior performance in challenging scenarios, including objects with occlusions, varying scales, and complex backgrounds. Extensive experiments demonstrate that the hybrid model not only enhances detection accuracy but also reduces computational load, making it a practical solution for real-world applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.