Abstract

Offloading assists in overcoming the resource constraints of specific elements, making it one of the primary technical enablers of the Internet of Things (IoT). IoT devices with low battery capacities can use the edge to offload some of the operations, which can significantly reduce latency and lengthen battery lifetime. Due to their restricted battery capacity, deep learning (DL) techniques are more energy-intensive to utilize in IoT devices. Because many IoT devices lack such modules, numerous research employed energy harvester modules that are not available to IoT devices in real-world circumstances. Using the Markov Decision Process (MDP), we describe the offloading problem in this study. Next, to facilitate partial offloading in IoT devices, we develop a Deep Reinforcement learning (DRL) method that can efficiently learn the policy by adjusting to network dynamics. Convolutional Neural Network (CNN) is then offered and implemented on Mobile Edge Computing (MEC) devices to expedite learning. These two techniques operate together to offer the proper offloading approach throughout the length of the system's operation. Moreover, transfer learning was employed to initialize the Q-table values, which increased the system's effectiveness. The simulation in this article, which employed Cooja and TensorFlow, revealed that the strategy outperformed five benchmarks in terms of latency by 4.1%, IoT device efficiency by 2.9%, energy utilization by 3.6%, and job failure rate by 2.6% on average.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.