Abstract
In this paper, we present a hybrid approach for Word Sense Disambiguation of Arabic Language (called WSD-AL), that combines unsupervised and knowledge-based methods. Some pre-processing steps are applied to texts containing the ambiguous words in the corpus (1500 texts extracted from the web), and the salient words that affect the meaning of these words are extracted. After that a Context Matching algorithm is used, it returns a semantic coherence score corresponding to the context of use that is semantically closest to the original sentence. The contexts of use are generated using the glosses of the ambiguous word and the corpus. The results found by the proposed system are satisfactory; we have achieved a precision of 79%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Processing of Languages
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.