Abstract

Liquefaction-induced lateral spreading has caused severe damages to the infrastructures. To predict the liquefaction-induced lateral spreading, a hybrid approach was proposed based on the Newmark sliding-block model. One-dimensional effective stress analysis based on the borehole investigation of the site was conducted to obtain the triggering time of liquefaction and acceleration time history. Shear wave velocity of the liquefiable soil was used to estimate the residual shear strength of liquefiable soil. The limit equilibrium analysis was conducted to determine the yield acceleration corresponding with the residual shear strength of liquefied soil. The liquefaction-induced lateral spreading was calculated based on the Newmark sliding-block model. A case study based on Wildlife Site Array during the 1987 Superstition Hills earthquake was conducted to evaluate the performance of the hybrid approach. The results showed that the hybrid approach was capable of predicting liquefaction-induced lateral spreading and the calculated lateral spreading was 1.5 times the observed displacement in terms of Wildlife Site Array. Numerical simulations with two other constitutive models of liquefiable sand were conducted in terms of effective stress analyses to reproduce the change of lateral spreading and excess pore water ratio over the dynamic time of Wildlife Site Array. Results of numerical simulations indicated that the lateral spreading varied with the triggering time of liquefaction when different constitutive models were used. The simulations using PM4sand and UBC3D-PLM constitutive models predicted 5.2 times and 4 times the observed lateral spreading, respectively. To obtain the site response, the motions recorded at and below the ground surface were analyzed using the Hilbert–Huang transform. The low-frequency content of the motion below the ground surface was amplified at the ground surface, and the liquefaction effect resulted in a shift of the frequency content. By comparing the response spectra of the entire ground surface motion and the ground surface motion from the beginning to the triggering time of liquefaction, the liquefaction effect at the site was confirmed.

Highlights

  • A Hybrid Approach Calculating Lateral Spreading Induced by Seismic LiquefactionReceived 9 February 2020; Revised 20 July 2020; Accepted 23 August 2020; Published 10 September 2020

  • One of the most significant topics of Geotechnical earthquake engineering is seismic liquefaction

  • Liquefaction-induced lateral spreading is the horizontal displacement of ground with gentle sloping underlain by liquefiable deposits. e sloping of the ground where lateral spreading occurs is usually less than 5% based on Bartlett and Youd [1], and the ground surface with water table is usually underlain by loose sand or silt deposits which will liquefy during an earthquake

Read more

Summary

A Hybrid Approach Calculating Lateral Spreading Induced by Seismic Liquefaction

Received 9 February 2020; Revised 20 July 2020; Accepted 23 August 2020; Published 10 September 2020. To predict the liquefaction-induced lateral spreading, a hybrid approach was proposed based on the Newmark sliding-block model. One-dimensional effective stress analysis based on the borehole investigation of the site was conducted to obtain the triggering time of liquefaction and acceleration time history. E liquefaction-induced lateral spreading was calculated based on the Newmark sliding-block model. E results showed that the hybrid approach was capable of predicting liquefaction-induced lateral spreading and the calculated lateral spreading was 1.5 times the observed displacement in terms of Wildlife Site Array. Numerical simulations with two other constitutive models of liquefiable sand were conducted in terms of effective stress analyses to reproduce the change of lateral spreading and excess pore water ratio over the dynamic time of Wildlife Site Array. By comparing the response spectra of the entire ground surface motion and the ground surface motion from the beginning to the triggering time of liquefaction, the liquefaction effect at the site was confirmed

Introduction
The Hybrid Prediction Approach
Lateral Spreading Predicted by the Hybrid Approach
15 Unt: m
Interpretation of Analysis Results
Hilbert–Huang Transform to Site Response Analysis
Findings
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.