Abstract

This paper presents a hybrid efficient genetic algorithm (EGA) for the stochastic competitive Hopfield (SCH) neural network, which is named SCH–EGA. This approach aims to tackle the frequency assignment problem (FAP). The objective of the FAP in satellite communication system is to minimize the co-channel interference between satellite communication systems by rearranging the frequency assignment so that they can accommodate increasing demands. Our hybrid algorithm involves a stochastic competitive Hopfield neural network (SCHNN) which manages the problem constraints, when a genetic algorithm searches for high quality solutions with the minimum possible cost. Our hybrid algorithm, reflecting a special type of algorithm hybrid thought, owns good adaptability which cannot only deal with the FAP, but also cope with other problems including the clustering, classification, and the maximum clique problem, etc. In this paper, we first propose five optimal strategies to build an efficient genetic algorithm. Then we explore three hybridizations between SCHNN and EGA to discover the best hybrid algorithm. We believe that the comparison can also be helpful for hybridizations between neural networks and other evolutionary algorithms such as the particle swarm optimization algorithm, the artificial bee colony algorithm, etc. In the experiments, our hybrid algorithm obtains better or comparable performance than other algorithms on 5 benchmark problems and 12 large problems randomly generated. Finally, we show that our hybrid algorithm can obtain good results with a small size population.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.