Abstract

PurposeThis paper aims to optimize the assembly sequence planning (ASP) problem using a proposed hybrid algorithm based on Ant Colony Optimization (ACO) and Gray Wolf Optimizer (GWO). The proposed Hybrid Ant-Wolf Algorithm (HAWA) is designed to overcome premature convergence in ACO.Design/methodology/approachThe ASP problem is formulated by using task-based representation. The HAWA adopts a global pheromone-updating procedure using the leadership hierarchy concept from the GWO into the ACO to enhance the algorithm performance. In GWO, three leaders are assigned to guide the search direction, instead of a single leader in most of the metaheuristic algorithms. Three assembly case studies used to test the algorithm performance.FindingsThe proposed HAWA performed better in comparison to the Genetic Algorithm, ACO and GWO because of the balance between exploration and exploitation. The best solution guides the search direction, while the neighboring solutions from leadership hierarchy concept avoid the algorithm trapped in a local optimum.Originality/valueThe originality of this research is on the proposed HAWA. In addition to the standard pheromone-updating procedure, a global pheromone-updating procedure is introduced, which adopted leadership hierarchy concept from GWO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.