Abstract
The Ant Colony Optimization (ACO) is a recent meta-heuristic algorithm for solving hard combinatorial optimization problems. The algorithm, however, has the weaknesses of premature convergence and low search speed, which greatly hinder its application. In order to improve the performance of the algorithm, a hybrid ant colony optimization (HACO) is presented by adjusting pheromone approach, introducing a disaster operator, and combining the ACO with the saving algorithm and λ-interchange mechanism. Then, the HACO is applied to solve the vehicle routing problem with time windows. By comparing the computational results with the previous literature, it is concluded that the HACO is an effective way to solve combinatorial optimization problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.