Abstract

In ocean environment, the sound speed gradient of seawater has an important influence on far field sound propagation. The FEM/BEM is used to decouple the vibroacoustic radiation of the spherical shell, and the Green function of the virtual source chain is adopted for decoupling. For far field radiated Sound Pressure Level (SPL), the Beam Displacement Ray normal Mode (BDRM) is employed. The vibration and near-/far-field radiated SPL of spherical shell is analyzed in shallow sea uniform layer, negative/positive gradient, negative thermocline environment, and deep-sea sound channel. Results show that the vibroacoustic radiation of spherical shell acted at 300Hz can be analogous to dipole. When the radiated field of the spherical shell is dominated by large-grazing-angle waves, it can be analogous to vertically distributed dipole, and the far field radiated SPL is lower; while similar to horizontally distributed dipole if dominated by small-grazing-angle waves, and the far field SPL is high.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call