Abstract
We present a hybrid algorithm for adapting a set of speaker-independent hidden Markov models (HMMs) to a new speaker based on a combination of maximum a posteriori (MAP) parameter transformation and adaptation. The algorithm is developed by first transforming clusters of HMM parameters through a class of transformation functions. Then, the transformed HMM parameters are further smoothed via Bayesian adaptation. The proposed transformation/adaptation process can be iterated for any given amount of adaptation data, and it converges rapidly in terms of likelihood improvement. The algorithm also gives a better speech recognition performance than that obtained using transformation or adaptation alone for almost any practical amount of adaptation data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.