Abstract

Epilepsy is a neurological disorder caused by intense electrical activity in the brain. The electrical activity, which can be modelled through the superposition of several electrical dipoles, can be determined in a non-invasive way by analysing the electro-encephalogram. This source localization requires the solution of an inverse problem. Locally convergent optimization algorithms may be trapped in local solutions and when using global optimization techniques, the computational effort can become expensive. Fast recovery of the electrical sources becomes difficult that way. Therefore, there is a need to solve the inverse problem in an accurate and fast way. This paper performs the localization of multiple dipoles using a global-local hybrid algorithm. Global convergence is guaranteed by using space mapping techniques and independent component analysis in a computationally efficient way. The accuracy is locally obtained by using the Recursively Applied and Projected-MUltiple Signal Classification (RAP-MUSIC) algorithm. When using this hybrid algorithm, a four times faster solution is obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.