Abstract
This paper is concerned with the numerical solution of fractional initial value problems (FIVP) in sense of Caputo’s definition for dynamical systems. Unlike for integer-order derivatives that have a single definition, there is more than one definition of non integer-order derivatives and the solution of an FIVP is definition-dependent. In this paper, the chief differences of the main definitions of fractional derivatives are revisited and a numerical algorithm to solve an FIVP for Caputo derivative is proposed. The main advantages of the algorithm are twofold: it can be initialized with integer-order derivatives, and it is faster than the corresponding standard algorithm. The performance of the proposed algorithm is illustrated with examples which suggest that it requires about half the computation time to achieve the same accuracy than the standard algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.