Abstract

Machine learning has demonstrated success in clinical risk prediction modeling with complex electronic health record data. However, the evolving nature of clinical practices can dynamically change the underlying data distribution over time, leading to model performance drift. Adopting an outdated model is potentially risky and may result in unintentional losses. In this paper, we propose a novel Hybrid Adaptive Boosting approach (HA-Boost) for transfer learning. HA-Boost is characterized by the domain similarity-based and class imbalance-based adaptation mechanisms, which simultaneously address two critical limitations of the classical TrAdaBoost algorithm. We validated HA-Boost in predicting hospital-acquired acute kidney injury using real-world longitudinal electronic health records data. The experiment results demonstrate that HA-Boost stably outperforms the competing baselines in terms of both AUROC and AUPRC across a 7-year time span. This study has confirmed the effectiveness of transfer learning as a superior model updating approach in dynamic environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.