Abstract

Insulated gate bipolar transistors (IGBTs) are usually connected in series to form high-voltage switches in power electronics applications. However, the series operation of IGBTs is not easy due to the unbalanced voltage sharing between them, especially during the switching transients and the tail-current period. In this paper, a hybrid active gate drive is presented for both switching loss reduction and voltage balancing of the series-connected IGBTs. Compared with the conventional gate drive, the proposed method allows dynamical adjustment of the switching speed of IGBTs; thus the switching loss can be suppressed without increasing the current and voltage stresses of the power device. For series connection, the transient voltage sharing is achieved by using an adaptive control method, while the voltage balancing during the tail-current period is optimized by a low-loss snubber circuit. The performance of the proposed hybrid active gate drive and control method has been validated by experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.