Abstract

A hybrid electrochemical capacitor using and activated carbon (AC) as positive and negative electrodes, respectively, has been designed. The electrodes were individually tested in a mild aqueous electrolyte (0.65 M in order to define the adequate balance of active material in the capacitor as well as the working voltage. The hybrid electrochemical capacitor was cycled between 0 and 2.2 V for over 10,000 constant current charge/discharge cycles. A real energy density of 10 Wh/kg was reproducibly measured with a real power density reaching 3600 W/kg. The hydrogen and oxygen evolution reactions on AC and electrodes, respectively, were investigated in 0.65 M Despite the good electrochemical performance of the 2.2 V capacitor, gas evolution could be a hindrance for practical use. Subsequently, a 1.5 V capacitor was tested for more than 23,000 cycles and yielded interesting electrochemical performance with negligible gas evolution. © 2004 The Electrochemical Society. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.