Abstract
This paper proposes a new 7-level inverter topology for induction motor drives. It is a hybrid topology formed by cascading a 5-level active neutral-point-clamped inverter with a 3-level T-type converter. It is obtained using low-voltage semiconductor devices with voltage blocking capability of Vdc/3 and Vdc/6. The topology uses three floating capacitors per phase, which are balanced within a pulsewidth modulation (PWM) switching duration using switching-state redundancies for each pole-voltage level. Topology forms two stacks at the front-end, which requires individual symmetrical dc source. The analysis of switching loss and conduction loss is performed and compared with some of the existing 7-level multi-level inverters reported in various literatures to show the advantages of the proposed topology. Furthermore, the single dc source operation with two stacked capacitors and closed-loop control of neutral-point voltage using symmetrical six-phase induction motor is proposed. The voltage-control algorithms for floating capacitors and dc-link stacked capacitors are proposed, which are independent of load power factor and modulation index. Open-loop V / f and closed-loop rotor field oriented control are performed, and various results at steady and transient states are presented to validate the aforementioned claims.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.