Abstract

ABSTRACT We carry out an ALMA (3-2) and 1.3 mm continuum survey of 32 high-mass surface density regions of seven infrared dark clouds, with the aim of finding massive starless cores that may form the initial conditions for the formation of massive stars. Cores showing strong (3-2) emission are expected to be highly deuterated and indicative of early, potentially pre-stellar stages of star formation. We also present maps of these regions in ancillary line tracers, including C18O(2-1), DCN(3-2), and DCO+(3-2). Over 100 cores are identified with our newly developed core-finding algorithm, based on connected structures in position–velocity space. The most massive core has (potentially ) and so may be representative of the initial conditions or early stages of massive star formation. The existence and dynamical properties of such cores constrain massive star formation theories. We measure the line widths and thus velocity dispersion of six of the cores with strongest (3-2) line emission, finding results that are generally consistent with virial equilibrium of pressure confined cores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.