Abstract

AbstractUnderstanding the monsoonal climate over East Asia during the warm Pliocene, the closest analog of the future warm climate, could better inform us of the regional hydrological responses to global climate change. However, the variations and controlling mechanisms of the regional hydrology during this warm period are not determined due to discrepancies among different proxy‐derived records. Here we apply a multiproxy approach based on the geochemistry of calcite nodules from a Red Clay sequence located on the southern edge of the Chinese Loess Plateau. Both the trace metal/Ca ratios and the carbon and oxygen isotopic compositions of calcite nodules show low values during 5.4–4.1 Ma and increased during 4.1–3.3 Ma, together indicating a humid climate during the early Pliocene, the onset of drying starting at ∼4.1 Ma and further intensification at 3.6 Ma. The timings of these hydrological transitions are consistent with global temperature changes, underlining the crucial role of meridional thermal gradient in shaping the regional hydroclimate over East Asia by modulating the strength and position of the East Asian summer monsoon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call