Abstract

Renal disease is a global problem with unsustainable health-care costs. There currently exists a lack of accurate human renal disease models that take into account the complex microenvironment of these tissues. Here, we present a reusable microfluidic model of the human proximal tubule and glomerulus, which allows for the growth of renal epithelial cells in a variety of conditions that are representative of renal disease states including altered glomerular filtration rate, hyperglycemia, nephrolithiasis, and drug-induced nephrotoxicity (cisplatin and cyclosporine). Cells were exposed to these conditions under fluid flow or in traditional static cultures to determine the effects of a dynamic microenvironment on the pathogenesis of these renal disease states. The results indicate varying stress-related responses (α-smooth muscle actin (α-SMA) expression, alkaline phosphatase activity, fibronectin, and neutrophil gelatinase-associated lipocalin secretion) to each of these conditions when comparing cells that had been grown in static and dynamic conditions, potentially indicating more realistic and sensitive predictions of human responses and a requirement for a more complex "fit for purpose" model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.