Abstract
Micro/nanorobotic systems capable of targeted transporting and releasing hold considerable promise for drug delivery, cellular surgery, biosensing, nano assembling, etc. However, on-demand precise control of the micro/nanorobot movement remains a major challenge. In particular, a practical interface to realize instant and customized interactions between human and micro/nanorobots, which is quite essential for developing next generation intelligent micro/nanorobots, has seldom been explored. Here, we present a human-microrobot user interface to perform direct and agile recognition of user commands and signal conversion for driving the microrobot. The microrobot platform is built based on locally enhanced acoustic streaming which could precisely transport microparticles and cells along a given pathway, while the interface is enabled by tuning the actuation frequency and time with different instructions and inputs. Our numerical simulations and experimental demonstrations illustrate that microparticles can be readily transported along the path by the acoustic robotic system, due to the vibration-induced locally enhanced acoustic streaming and resultant propulsion force. The acoustic robotic platform allows large-scale parallel transportation for microparticles and cells along given paths. The human microrobot interface enables the micromanipulator to response promptly to the users' commands input by typing or music playing for accurate transport. For example, the music tone of a playing melody is used for manipulating a cancer cell to a targeted position. The interface offers several attractive capabilities, including tunable speed and orientation, quick response, considerable delivery capacities, high precision and favorable controllability. We expect that such interface will work as a compelling and versatile platform for myriad potential scenarios in transportation units of microrobots, single cell analysis instruments, lab-on-chip systems, microfactories, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.