Abstract

The human liver is an essential multifunctional organ, and liver diseases are rising with limited treatment options. However, the cellular composition of the liver remains poorly understood. Here, we performed single-cell RNA-sequencing of ~10,000 cells from normal liver tissue of 9 human donors to construct a human liver cell atlas. Our analysis revealed previously unknown sub-types among endothelial cells, Kupffer cells, and hepatocytes with transcriptome-wide zonation of some of these populations. We reveal heterogeneity of the EPCAM+ population, which comprises hepatocyte-biased and cholangiocyte populations as well as a TROP2int progenitor population with strong potential to form bipotent liver organoids. As proof-of-principle, we utilized our atlas to unravel phenotypic changes in hepatocellular carcinoma cells and in human hepatocytes and liver endothelial cells engrafted into a mouse liver. Our human liver cell atlas provides a powerful resource enabling the discovery of previously unknown cell types in the normal and diseased liver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.