Abstract
A human hair keratin biomaterial hydrogel scaffold was evaluated as a nerve conduit luminal filler following median nerve transection injury in 10 Macaca fascicularis nonhuman primates (NHP). A 1 cm nerve gap was grafted with a NeuraGen® collagen conduit filled with either saline or keratin hydrogel and nerve regeneration was evaluated by electrophysiology for a period of 12 months. The keratin hydrogel-grafted nerves showed significant improvement in return of compound motor action potential (CMAP) latency and recovery of baseline nerve conduction velocity (NCV) compared with the saline-treated nerves. Histological evaluation was performed on retrieved median nerves and abductor pollicis brevis (APB) muscles at 12 months. Nerve histomorphometry showed a significantly larger nerve area in the keratin group compared with the saline group and the keratin APB muscles had a significantly higher myofiber density than the saline group. This is the first published study to show that an acellular biomaterial hydrogel conduit filler can be used to enhance peripheral nerve regeneration and motor recovery in an NHP model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.