Abstract

Drug safety trials require substantial ECG labelling like, in thorough QT studies, measurements of the QT interval, whose prolongation is a biomarker of proarrhythmic risk. The traditional method of manually measuring the QT interval is time-consuming and error-prone. Studies have demonstrated the potential of deep learning (DL)-based methods to automate this task but expert validation of these computerized measurements remains of paramount importance, particularly for abnormal ECG recordings. In this paper, we propose a highly automated framework that combines such a DL-based QT estimator with human expertise. The framework consists of 3 key components: (1) automated QT measurement with uncertainty quantification (2) expert review of a few DL-based measurements, mostly those with high model uncertainty and (3) recalibration of the unreviewed measurements based on the expert-validated data. We assess its effectiveness on 3 drug safety trials and show that it can significantly reduce effort required for ECG labelling-in our experiments only 10% of the data were reviewed per trial-while maintaining high levels of QT accuracy. Our study thus demonstrates the possibility of productive human-machine collaboration in ECG analysis without any compromise on the reliability of subsequent clinical interpretations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.