Abstract

Human Activity Recognition (HAR) is becoming an essential part of human life care. Existing HAR methods are usually developed using a two-level approach, wherein a first-level Machine Learning (ML) classifier is employed to distinguish the static and dynamic activities, followed by a second-level classifier to identify the specific activity. These approaches are not suitable for wearable devices, due to the high computational and memory consumption. Our rigorous analysis of various HAR datasets opens up a new possibility that static or dynamic activities can be discriminated against through a simple statistical technique. Therefore, we propose to utilize a statistical feature extraction technique to replace the first-level ML classifier, thus achieving more lightweight computation. Next, we employ Random Forest (RF) and Convolutional Neural Networks (CNN) to classify the specific activities, achieving higher accuracy compared to the state-of-the-art results. We further reduce the computation and memory consumption of the above combined approach by applying pruning and quantizing techniques to CNN (PQ-CNN). Experimental results show the proposed lightweight HAR method achieved an F1 score of 0.9417 and 0.9438 for unbalanced and balanced datasets, respectively. On top of lightweight and accuracy, the proposed HAR method is practical for wearable devices by using a single accelerometer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call