Abstract
AbstractIn this paper, an H‐type electric/hybrid electric aircraft propulsion architecture is proposed to address the issues associated with the radial electric propulsion architecture. In a radial architecture, a fault on the main bus or failure of the generator leads to shut down of all the propulsion motors in that channel, thus increasing the burden on the remaining motors to maintain the power required by the aeroplane. As a result, it is necessary to oversize the motors for the purpose of compensating for the loss of other motors. To mitigate these issues, a new H‐type architecture is introduced to isolate the particular faulty section while still maintaining power flow to the remaining healthy motors. The proposed architecture minimises the oversizing of various components in the system as compared to radial propulsion architecture. The sizing of components and the amount of overall mass reduction is discussed by using the proposed architecture. Typhoon Hardware in the Loop platform is used to validate the performance of both the architectures for faults at different locations, and the results are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.