Abstract

In this paper, a hyperbolic tangent function (HTF) based higher order adaptive control algorithm is used with perturb & observe based maximum power point tracking algorithm for a three-phase, single-stage, grid-interfaced solar photovoltaic system with distribution static compensator capabilities. The variable learning based HTF control algorithm is used for the reduction of the mean square error and increases the tracking speed in the system, thereby improving the response of the system. The HTF-based control algorithm is simple in implementation with easy mathematical formulations. The proposed system is simulated in MATLAB/Simulink and is tested on a developed prototype in the laboratory under various abnormal conditions, such as variable solar irradiation, load unbalancing, and voltage sag/swell. The response of system is satisfactory and the total harmonic distortions of grid current are within the limit, as outlined in the IEEE-519 standard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.